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Thermal phase transition phenomenon, which is caused by spin- 7
crossover, has been extensively investigated in solid-state chemistry. S
The spin-crossover phase transition has been observet-if d 6
octahedral coordination transition metal idrfdn a spin-crossover "5 o K
complex, a transition metal ion can be in either the low-sfsh ( o5 5+ N g
. . . . £ le) [
or the high-spinlts) state depending on the strength of the ligand 5 ° e
field. When the thermal energy is close to the exchange energy é 47 g ® /
that corresponds to the crossover, a spin transition occurs between 3 o)
the two spin states. In the field of solid-state chemistry, studies on 34
functionalized molecule-based magnets have also received much
attention. Cyano-bridged metal assemiliasee good systems for 2+ T T T T T
novel functional magnetic materials since they exhibit responses 160 180 200 220 240 260 280
to external stimuli such as humidftand light>© In this work, we Temperature / K

observed a spin-crossover phenomenon in a cesium iron hexacy-rigure 1. Temperature dependence g§iT — T plots of cesium iron
anochromate, which is a Prussian blue analogue. This compoundhexacyanochromate in an external magnetic field of 5000 G; measured while
exhibited a thermal phase transition with transition temperatures cooling ©) and warming @).
of 211 K (Ty2) and 238 K {2) due to a spin-crossover on'Fe
sites. This spin-crossover phase transition is accompanied by a
lattice contraction of 0.38 A, but maintains a face-centered cubic
(fce) structureF43m. This is the first observation of Fespin-
crossover in a series of Prussian blue analogues.

The target compound was prepared by reacting a mixed aqueous
solution of Kg[Cr'"(CN)g] (0.01 mol dnr3) and C4CI (1 mol dn13)
with a mixed agueous solution of el, (0.01 mol dm3) and C&
Cl (12 mol dn73). The obtained precipitate was a brown powder,
and elemental analyses by inductively coupled plasma mass
spectrometry and standard microanalytical methods showed that it
had a composition of CsFeCr(Ci).3H,O. Calcd: Cs, 31.6; Fe,
13.3;Cr, 12.4; C,17.1; H, 0.6; N, 20.0. Found: Cs, 31.5; Fe, 13.3; e
Cr, 12.4; C, 17.3; H, 0.6; N, 19.9. Scanning electron microscope 2200 2180 2160 2140 2120 2100 2080 2060

Abs. (a.u.)

(SEM) images showed that the prepared sample consists of cubic Wavenumber / cm’”
microcrystals of ca. 200 nm (Supporting Information). Figure 2. Temperature dependence of the CTsiretching frequencies in

Magnetic measurements were conducted using a superconductinghe IR spectra as the temperature dec_reases; measured at 280 K (bold line),
quantum interference device (SQUID) magnetometer (Quantum 205 K (dotted line), and 180 K (fine line).
Design MPMS-5). Figure 1 shows the temperature dependence ofpeak at 2163 cnit (A) and a weak peak at 2083 cin(B) were
:2;5;;3?; _%f ;?Z rrr;(t)(leag Tig:qei::(jlsiﬁsgﬁpégnémwaﬁ %n;grgzzc observed. Peaks A and B are assigned th-@ZN—Fe',sand CH —
NC—Fé€'s of the cyano flip] respectively. As the temperature

) -1 iah-
I'eld of ?000 HGT ThheXMT V?gjseovéai&tlhl f il motl (glgh ddecreased, these two peaks decreased, and two new peaks appeared
emperature (HT) phase) a - As Te temperature decreasecy, »156 cm1 (C) and 2095 cm' (D) aroundTyy. Peak C is

::ﬁ])i‘mz%agezsggrﬁlycgqe(;gﬁe; ngu an (ZI(;LV(?/_It(ezrannderrZ?lj:rZe((ij;l_)IocaI assigned to ('r—CN—Fé€';,, which is converted from peak A. Peak

) 8 P D is C"—=NC—Fé€'i,, which is from a shift in peak B due to the
phase). Conv_ersely, as the sample in the LT phase was WarmEdVariation in the cyano group between the HT and LT phases. The
:/Zelgg'-;\tﬁggg I}rlcr'le'ﬁzet?aﬂgiltjigi %E%Keizgu:ztsug‘egﬂt'ﬁ? (z_:__' T)phase IR spectra indicate that the electronic states of HT and LT phases
and LT— HT (;I'm) were 211 and 238 K, respectively alrllzél the 7€ CLFE'ICIH(CNJel}o.od FE'W[CI (NCel} o0 1.3H.0 and C5
width of the thermal hysteresis looAT = le/zr — Ty2) Was: 27 K {Felho 17€50,6dCr' (CN)el}o o FE[Cr (NC)l} 0.0 1. 3HO, re-

. - ‘. spectively® In the HT phase, 94% of Hfas in thehsstate and 6%

This thermal phase transition was repeatedly observed several tlmesl.s thels state. In contrast, 11%((0.12 x 0.94) x 100) of Fé is

Figure 2 shows the temperature dependence of thesBBIching o1\ tate and 89% (0.88 x 0.94-+ 0.06) x 100) of Fd is the
frequencies in the IR spectra. In the HT phase at 280 K, a strong Is state in the LT phase

*The University of Tokyo. The Fé spin-crossover was also confirmed Y{Fe Méssbauer
*PRESTO, JST. spectroscopy (Supporting Information). In the HT phase, a doublet
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In summary, we found that a cesium iron hexacyanochromate
showed a spin-crossover behavior. The spin-crossover phenomenon
in a Prussian blue analogue allows a variety of new functionalities
to be considered. For example, the observation of photoinduced
magnetization caused by a light-induced excited spin state trapping
A effecf is expected since this material has a spontaneous magnetiza-
tion.
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Supporting Information Available: SEM image of the precipitate,
5"Fe Mtssbauer spectra of HT and LT phases, statistical probabilities
30 40 of coordinate geometries around Fe in Fe[Cr(gM)y5H.0, analysis

20 / degree of yuT — T curves, magnetization versus temperature plots, and
Figure 3. Temperature dependences of XRD spectra for cesium iron Magnetization versus external magnetic field plots of the LT phase.
hexacyanochromate as the temperature decreases. (* indicates Cu from thd his material is available free of charge via the Internet at http:/

sample holder).
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peak was mainly observed (isomer skiftl.07; quadrupole splitting

= 0.74), which is assigned to g In the LT phase, this doublet
peak disappeared and a singlet peak appeared (isomer<hit),
which is assigned to Ig. These results show that the spin-crossover
actually occurred on Mesites.

The temperature dependence of the X-ray powder diffraction
(XRD) patterns showed that the present spin-crossover is ac-
companied by a structural phase transition (Figure 3). The XRD
patterns of the HT phase at 280 K showed anFd8m structure
with a lattice constant of 10.708(1) A. In contrast, the LT phase
showed XRD patterns of an fcE43m structure with a lattice
constant of 10.330(1) A. The lattice constant in the LT phase
decreased by about 0.38 A compared to that in the HT phase. This
structural phase transition was repeatedly observed.

The CsFeCr Prussian blue analogue clearly showed a spin-cross-
over transition, but in the analogue compound of Fe[CrEl:N)
5H,0 a spin-crossover was not observedh this analogue
compound, typically Pkis coordinated by four N atoms from cyano
groups and two O atoms from ligand waters and the statistical
probabilities of each coordinate geometry are 8.8% kg 26.4%
(FE'NsO), 33.0% (F&N4O,), 22.0% (FEN3Os), 8.2% (FEN,0,),
and 1.6% (FENOs) (Supporting Information). For the spin-
crossover phenomenon to appear, the number of cyanonitrogen
around F& must be significant. Maybe in Fe[Cr(C§y;z-5H,0 the
strength of the ligand field is insufficient to cause the spin-crossover.
In contrast, FENg in the CsFeCr Prussian blue analogue is an
environmental advantage for the spin-crossover. Furthermore, since
both F¢l and CH' are bridged by a CNgroup with six-coordinate,
the interaction between spin-crossover sites should be stronger in
the 3D structure.

The field-cooled magnetization curve at an external magnetic
field of 10 G revealed that the LT phase had a spontaneous
magnetization with a magnetic ordering temperatur® & and
the saturation magnetizatioM§) at 2 K was 3.3ug (Supporting
Information). The observelis value of 3.3ug is consistent with
the expectedMs value of 3.4ug due to the sum of sublattice
magnetization of Ct and the remaining P for a given formula
of the LT phase.
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